- homogeneous operator
- мат.однородный оператор
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Homogeneous differential equation — A homogeneous differential equation has several distinct meanings.One meaning is that a first order ordinary differential equation is homogeneous if it has the form : frac{dy}{dx} = F(y/x).To solve such equations, one makes the change of… … Wikipedia
Homogeneous space — In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non empty manifold or topological space X on which G acts continuously by symmetry in a transitive way. A… … Wikipedia
Homogeneous polynomial — In mathematics, a homogeneous polynomial is a polynomial whose terms are monomials all having the same total degree; or are elements of the same dimension. For example, x^5 + 2 x^3 y^2 + 9 x^1 y^4 is a homogeneous polynomial of degree 5, in two… … Wikipedia
Discrete Laplace operator — For the discrete equivalent of the Laplace transform, see Z transform. In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a… … Wikipedia
Laplace operator — This article is about the mathematical operator. For the Laplace probability distribution, see Laplace distribution. For graph theoretical notion, see Laplacian matrix. Del Squared redirects here. For other uses, see Del Squared (disambiguation) … Wikipedia
Differential operator — In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation, accepting a function and returning… … Wikipedia
Kernel (linear operator) — Main article: Kernel (mathematics) In linear algebra and functional analysis, the kernel of a linear operator L is the set of all operands v for which L(v) = 0. That is, if L: V → W, then where 0 denotes the null vector… … Wikipedia
Hecke operator — In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by Hecke (1937), is a certain kind of averaging operator that plays a significant role in the structure of vector spaces of modular forms and more… … Wikipedia
Symbol of a differential operator — In mathematics, differential operators have symbols, which are roughly speaking the algebraic part of the terms involving the most derivatives.Formal definitionLet E 1, E 2 be vector bundles over a closed manifold X , and suppose: P: C^infty(E 1) … Wikipedia
Fourier integral operator — The concept of Fourier integral operators stems from mathematical analysis. They have become an important tool in the theory of partial differential equations. The class of Fourier integral Operators contains differential operators as well as… … Wikipedia
Theorems and definitions in linear algebra — This article collects the main theorems and definitions in linear algebra. Vector spaces A vector space( or linear space) V over a number field² F consists of a set on which two operations (called addition and scalar multiplication, respectively) … Wikipedia